Comparison and Automated Selection of Local Optimization Solvers for Interval Global Optimization Methods
نویسندگان
چکیده
We compare six state-of-the-art local optimization solvers with focus on their efficiency when invoked within an interval-based global optimization algorithm. For comparison purposes we design three special performance indicators: a solution check indicator (measuring whether the local minimizers found are good candidates for near-optimal verified feasible points), a function value indicator (measuring the contribution to the progress of the global search), and the running time indicator (estimating the computational cost of the local search within the global search). The solvers are compared on the COCONUT Environment test set consisting of 1307 problems. Our main target is to predict the behavior of the solvers in terms of the three performance indicators on a new problem. For this we introduce a k-nearest neighbor method applied over a feature space consisting of several categorical and numerical features of the optimization problems. The quality and robustness of the prediction is demonstrated by various quality measurements with detailed comparative tests. In particular, we found that on the test set we are able to pick a ‘best’ solver in 66–89% of the cases and avoid picking all ‘useless’ solvers in 95–99% of the cases (when a useful alternative exists). The resulting automated solver selection method is implemented as an inference engine of the COCONUT Environment.
منابع مشابه
Testing Soccer League Competition Algorithm in Comparison with Ten Popular Meta-heuristic Algorithms for Sizing Optimization of Truss Structures
Recently, many meta-heuristic algorithms are proposed for optimization of various problems. Some of them originally are presented for continuous optimization problems and some others are just applicable for discrete ones. In the literature, sizing optimization of truss structures is one of the discrete optimization problems which is solved by many meta-heuristic algorithms. In this paper, in or...
متن کاملHybridization of Interval CP and Evolutionary Algorithms for Optimizing Difficult Problems
The only rigorous approaches for achieving a numerical proof of optimality in global optimization are interval-based methods that interleave branching of the search-space and pruning of the subdomains that cannot contain an optimal solution. State-of-the-art solvers generally integrate local optimization algorithms to compute a good upper bound of the global minimum over each subspace. In this ...
متن کاملAn Interval Partitioning Approach for Continuous Constrained Optimization
Constrained Optimization Problems (COP’s) are encountered in many scientific fields concerned with industrial applications such as kinematics, chemical process optimization, molecular design, etc. When non-linear relationships among variables are defined by problem constraints resulting in non-convex feasible sets, the problem of identifying feasible solutions may become very hard. Consequently...
متن کاملA Meta-heuristic Algorithm for Global Numerical Optimization Problems inspired by Vortex in fluid physics
One of the most important issues in engineering is to find the optimal global points of the functions used. It is not easy to find such a point in some functions due to the reasons such as large number of dimensions or inability to derive them from the function. Also in engineering modeling, we do not have the relationships of many functions, but we can input and output them as a black box. The...
متن کاملتعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 21 شماره
صفحات -
تاریخ انتشار 2011